Gleason–Kahane–Żelazko Theorem for Bilinear Maps
نویسندگان
چکیده
Abstract Let A and B be two unital Banach algebras
منابع مشابه
Bilinear maps and convolutions
Let X,Y, Z be Banach spaces and let u : X×Y → Z be a bounded bilinear map. Given a locally compact abelian group G , and two functions f ∈ L(G,X) and g ∈ L(G,Y ), we define the u -convolution of f and g as the Z -valued function f ∗u g(t) = ∫ G u(f(t− s), g(s))dμG(s) where dμG stands for the Haar measure on G . We define the concepts of vector-valued approximate identity and summability kernel ...
متن کاملArens regularity of bilinear maps and Banach modules actions
Let $X$, $Y$ and $Z$ be Banach spaces and $f:Xtimes Y longrightarrow Z$ a bounded bilinear map. In this paper we study the relation between Arens regularity of $f$ and the reflexivity of $Y$. We also give some conditions under which the Arens regularity of a Banach algebra $A$ implies the Arens regularity of certain Banach right module action of $A$ .
متن کاملA homomorphism theorem for bilinear multipliers
In this paper we prove an abstract homomorphism theorem for bilinear multipliers in the setting of locally compact Abelian (LCA) groups. We also provide some applications. In particular, we obtain a bilinear abstract version of K. de Leeuw’s theorem for bilinear multipliers of strong and weak type. We also obtain necessary conditions on bilinear multipliers on non-compact LCA groups, yielding b...
متن کاملInversion Theorem for Bilinear Hilbert Transform
where f ∈ L2(R) and g ∈ L∞(R), respectively f ∈ Lp1(R) and g ∈ Lp2(R), 1 < p1, p2 <∞. Their main result is the affirmative answer on the Calderon conjecture, first for p1 = 2, p2 = ∞ ([5]), then for p1, p2 ∈ (1,∞). Let 2/3 < p = p1p2 p1+p2 or p1 = 2, p2 = ∞ and p = 2. Then their main result is ||Hα(f, a)||Lp ≤ C||f ||Lp1 ||a||Lp2 , f ∈ L p1, a ∈ Lp2, where C > 0 depends on α, p1, p2. We refer t...
متن کاملFinding Optimal Formulae for Bilinear Maps
We describe a unified framework to search for optimal formulae evaluating bilinear — or quadratic — maps. This framework applies to polynomial multiplication and squaring, finite field arithmetic, matrix multiplication, etc. We then propose a new algorithm to solve problems in this unified framework. With an implementation of this algorithm, we prove the optimality of various published upper bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Mathematicae Silesianae
سال: 2022
ISSN: ['0860-2107', '2391-4238']
DOI: https://doi.org/10.2478/amsil-2022-0017